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A
lveolar bone shortage for im-
plant surgery has been a chronic
problem for a long time. Eden-

tulous ridges in the maxillary posterior
area, in particular, have a tendency of
rapid atrophy of alveolar bone after
extraction of teeth after advanced peri-
odontal disease, trauma, or retained
dental caries and require special recon-
structive procedures to increase the
alveolar bone height through bone
graft for prospective implant therapy.
When a bone graft in the maxillary
sinus is considered in severely compro-
mised cases, the first surgical options
become lateral approach to the
maxillary sinus. Several bone graft ma-
terials can be used in maxillary sinus
augmentation, such as autogenous
bone, mineralized and demineralized
freeze-dried allografts, coralline cal-
cium carbonate, bioactive glass, syn-
thetic polymers, anorganic bovine
bone, and synthetic hydroxyapatite (HA).1–8 Autogenous bone, though, is

superior to other materials in infection
resistance, graft success rate, abundant
cellular contents, and ability to induce
migration of osteogenic cells.3,9,10

Nonetheless, autogenous bone requires
additional surgical procedures that
could cause donor site complications,
such as hematoma and damage to adja-
cent anatomic structures.11 Moreover,
relatively rapid resorptions of autoge-
nous bone grafts have been reported,
particularly with severe pneumatiza-
tion in maxillary sinus.12,13

Xenogenous and synthetic bone
graft materials have been considered
attractive alternatives for overcoming
the shortcomings of autogenous bone
graft materials. They are potentially
available in unlimited amounts and
can be controlled in a range of different
sizes and shapes as needed and de-
signed to deliver adjunctive molecules,
such as various hormones and growth
factors, to promote new bone forma-
tion.14,15 The bone graft procedures
are commonly followed by the migra-
tion of osteogenic mesenchymal cells
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Objective: To investigate the
osteogenic potential of macropore
octacalcium phosphate (OCP)–
coated deproteinized bovine bone
materials (DBBMs) in sinus augmen-
tation.

Study design: Macropore OCP-
coated DBBM was manufactured
from bovine bone by thermal and
chemical processing. Sinus grafts of
a lateral window approach with
experimental bone were conducted
in 10 patients. At 6 months after
surgery, a total of 10 specimens were
obtained from 10 patients. But, 4 of
them were excluded because the
amount of specimens was not enough
for evaluation. Morphological inves-
tigation under scanning electron

microscopy and histological evalua-
tion were performed.

Results: OCP was evenly
attached to the surface of the exper-
imental graft and showed a relatively
large pore size (300–400 mm) com-
pared with Bio-Oss (100–200 mm).
New bone comprised 23.49%
(60.10), and residual graft material
comprised 15.39% (60.06) in bone
specimens.

Conclusion: A macropore-sized
design and OCP coating could pres-
ent a favorable environment for new
bone formation in maxillary sinus
grafts. (Implant Dent 2015;0:1–6)
Key Words: sinus augmentation,
octacalcium phosphate, macropore,
bovine bone
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and ingrowth of microcapillary cells to
the defect site. The extent of these pro-
cesses varies according to the shape and
macro-micro size of the bone graft
materials, which is controlled by
a thermochemical process and surface
treatment.16,17 Synthetic HAwith a con-
trolled macropore size presents the
defect site with an abundant space for
the ingrowth of microvessels and the
migration of osteoblasts, ensuring
effective new bone formation.18–20 The
high osteoconductivity of graft bone
materials promotes the new bone for-
mation by helping the ingrowth of oste-
ogenic cell and microvessels.21 The
modification of bone graft materials to
improve osteoconductivity has also
been studied.22 Surface treatment of
bone grafts is also considered to be
a key factor in the promotion of new
bone formation. In addition, octacalci-
um phosphate (OCP), an HA-based
synthetic graft material, has tendency
to undergo a relatively fast resorption
and be promptly replaced by new bone
compared with other types of synthetic
bone graft, such as b-tricalcium phos-
phate (b-TCP) andHA.23,24 OCP acts as
a precursor for new bone formation
after graft placement with excellent
biocompatibility, and its physical
properties can be improved by modifi-
cation with additional media, allowing
its use in an extensive variety of
applications.25

Xenogenous grafts have shown
excellent osteoconductive properties
and promising results in sinus floor
elevation procedures. Moreover, they
promote osteogenesis and show a very
low resorption rate.26,27 Xenogenous
graft material is composed of natural
bone mineral from other species and
has extensive interconnecting pores
and a high surface energy area. It
acts as a framework onto which
bone-forming cells and blood vessels
travel to form new bone.28,29 One type
of xenogenous graft, Bio-Oss (Geist-
lich Pharma, Wolhusen, Switzerland),
involves deproteinized bovine bone
material (DBBM), which has already
been proven in previous studies to be
clinically stable and have superior
osteogenic ability and has been com-
mercially used in many implant sur-
geries.2,12,13,26,30 However, the slow

rate of resorption and its osteogenicity
should be improved upon. Studies into
modification of the graft, such as sur-
face treatment and graft design, are
still ongoing to overcome the limits
of DBBM.7,31,32

In this study, the graft design of
conventional DBBM was modified
using thermal and chemical treatment
to obtain macro-sized pores. In addi-
tion, OCP granules were attached to the
surface of the graft material. Patients
who had an edentulous ridge in the
posterior maxilla with alveolar bone
atrophy received a sinus graft through
a lateral approach with macropore-
sized OCP-coated DBBM in the pro-
spective implant therapy. Graft cores
were obtained 6 months after surgery to
evaluate the osteogenic potential and

clinical reliability of the modified
DBBM.

MATERIALS AND METHODS

Preparation of OCP-Coated Macropore
Bovine Bone

Macropore OCP-coated DBBM
(Ti-Oss; Chiyewon, Seoul, Korea) was
manufactured from bovine bone. OCP
was prepared by the LeGeros method
and processed to coat the surface of the
experimental bone.33 To eliminate fat
and protein in general, meticulous
cleansing and a thermal process were
performed. During this process, the cal-
cium core structure of trabecular bone
shrinks by approximately 15%, with
pore size tending to become larger as
a result. This results in a significant bio-
logical advantage for bone formation
because the blood is readily absorbed

Fig. 1. A harvested bone core (A) and histological preparation of the specimen for assess-
ment (B).

Fig. 2. OCP attached to the surface of the bovine bone. A, Scale-shaped OCPs were shown
on the surface of the bone graft material (35000, SEM). B, OCP was embedded among the
round-shaped bone particles (yellow arrow 350000, SEM). Each gradation on the scale in-
dicates 1 mm.

Fig. 3. Comparison of macropores on the surface of bone graft materials (3100, SEM).
A, Bio-Oss. B, Ti-Oss. Each gradation on the scale indicates 50 mm.
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deep inside the pore, resulting in close
clot contact. The bone was selectively
pulverized in the 1.2- to 1.7-mm range.

Patients
Sinus graft procedures were con-

ducted in 10 patients. A lateral
approach to the maxillary sinus cavity
was used. After elevation of the sinus
membrane, between 1.0 and 1.5 g of
macropore OCP-coated DBBM was
packed into the sinus cavity. The bony
window was repositioned, and wound
closure was performedwith 4-0 nylon.
Patients were prescribed antibiotics
and analgesics for 5 days, and suture
materials were removed 7 days after
surgery. Cylindrical bone cores were
obtained from each patient with
a 3-mm trephine bur at 6 to 8 months
after bone graft surgery. Implant fix-
tures were installed in the prepared
drilling hole by a trephine bur fol-
lowed by sequential drilling as part of
the routine implant surgery procedure.
Harvested bone cores were sent to the
histology laboratory for evaluation
(Fig. 1).

This study was conducted in accor-
dance with the ethical principles of the
Declaration of Helsinki. The study pro-
tocol and consent form were reviewed
and approved by the Institutional
Review Board of the Asan Medical
Center. Informed consent was obtained
from all patients.

Surface Structure of the Bone
Graft Material

The OCP microstructure on the sur-
face of the bone graft material was
investigated, and the macropore sizes on

the surface of bone graft materials were
compared with those of Bio-Oss (Geist-
lichPharma)byscanningelectronmicros-
copy (S-4300; Hitachi, Tokyo, Japan).

Histological Processing and Light
Microscopy Imaging

The bone cores were fixed in 10%
formalin for 24 hours, dehydrated in
alcohol, rinsed, embedded in paraffin,
and sectioned at a thickness of 5.0 mm.
The specimenswere stainedwith hema-
toxylin and eosin. Histomorphometry
was investigated using a light micro-
scope. Images were captured by digital
cameras and recorded to evaluate the
proportions of new bone formation
and residual bone graft.

RESULTS

OCP Treatment
Octacalcium was successfully

attached to the surface of the experimen-
tal graft. OCPs were evenly distributed
on the bone surface (Fig. 2A), and they
had scale-like shape embedded among
the round bone particles (Fig. 2B).

Macropore Size Comparison
The macropore size of Ti-Oss was

comparedwith that ofBio-Oss (Geistlich
Pharma). Under 3100 magnification,
Ti-Oss had a relatively large pore size
(300–400 mm) compared with Bio-Oss
(100–200 mm), showing favorable

Fig. 4. New bone formation of the grafted Ti-Oss in the human maxillary sinus cavity. A,
Residual graft material (*) was circumscribed by newly formed bone (hematoxylin and eosin
stain, 340). B, Ingrowth of microvessels in the newly formed bone (arrow) with lacunae in the
bone lamellae (hematoxylin and eosin stain, 3100).

Table 1. New Bone Formation and
Residual Graft Materials in the
Specimens

Specimen New Bone (%) Graft (%)

1 27.64 16.00
2 16.14 5.33
3 11.10 11.86
4 18.40 24.47
5 35.95 17.01
6 31.69 17.64
Mean 23.49 15.39

Specimens 3 and 4 had more residual bone graft material
compared with newly formed bone. But, there was more newly
formed bone than residual graft material in other specimens.
Mean new bone formation was 23.49% (60.10), and mean
residual graft material was 15.39% (60.06).

Fig. 5. Mean new bone formation and residual bone graft in the harvested cylindrical bone core.
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conditions for the ingrowth of capillary
and osteogenic cells (Fig. 3).

Graft Material and New Bone Formation
Four of ten specimens from 10

patients were discarded, as the har-
vested samples did not have sufficient
bone graft material for evaluation.
Therefore, 6 specimens were used for
histomorphometric analysis. New bone
comprised 23.49% (60.10), and resid-
ual graft material comprised 15.39%
(60.06) (Table 1 and Figs. 4 and 5).
Thus, there was more newly formed
bone than residual graft material.

DISCUSSION

It is vital in implant dentistry to
repair the posterior maxillary edentu-
lous area and achieve occlusion for
recovery of masticatory function. In
the posterior maxillary area, fast alveo-
lar bone resorption occurs after loss of
teeth, which in most cases leads to
additional surgical procedures, such as
bone grafts.34,35 Two surgical methods,
generally, can be used for the recon-
struction of alveolar bone in the maxil-
lary posterior edentulous area: the
lateral window approach and transal-
veolar bone technique.36,37 The lateral
window approach is recommended for
residual alveolar bone that is less than 6
mm in height. This technique has been
widely used for the reconstruction of
vertical deficiencies in the maxillary
posterior alveolar bone since the suc-
cess of this procedure was first reported
by Tantum.37 The space acquired in the
sinus cavity after elevation of the max-
illary sinus mucosa can accommodate
various bone graft materials, such as
autogenous bone, allograft bone, xeno-
graft bone, synthetic HA, and combina-
tions of bone graft materials.38–40

The ideal bone graft materials for
themaxillary sinus bone graft should be
able to stabilize the space for ingrowth
of new bone and osseointegration of
implant fixtures and bemaintained until
consolidation of the bone after prostho-
dontic treatment. Moreover, the ideal
material should show osteoconductiv-
ity for the migration of adjacent osteo-
genic cells. Of course, the ideal bone
graft materials should also not cause
patient morbidity.34

Autogenous bone is superior to
other bone graft materials in terms
of osteoconductivity, osteoinductivity,
and biocompatibility and shows strong
stability and resistance to infection
after bone graft surgery. Autogenous
bone has thus long been considered the
gold standard material for implant
surgery. An additional surgical pro-
cedure, however, is required for har-
vesting the graft bone, entailing
damage to anatomic structures, such
as the inferior alveolar nerve and
maxillary sinus floor, with attendant
clinical complications. Therefore,
autogenous bone alternatives are
sought after.31 Synthetic bone shows
no limits on supply. Moreover, the size
and shape of graft materials can be
controlled as needed, and they can be
designed to deliver osteogenic mole-
cules such as growth factors and
hormones.41 DBBM has commonly
been used as an alternative bone graft
material to autogenous bone.2,5 Bio-
Oss (Geistlich Pharma), a representa-
tive type of DBBM that is widely used
in clinical setting, is a type of HA from
natural bovine bone consisting of
10-mmgranules with 75%–80%poros-
ity that is processed to a completely de-
proteinized state.31Bio-Oss has excellent
osteoconductivity and is slowly ab-
sorbed, enabling it to maintain the space
beneath the elevated maxillary sinus
membrane42 and act as a scaffold for
the ingrowth of osteogenic stem cells.43

Forum et al44 reported that Bio-Oss
maintained augmented alveolar bone
height for more than 3 years, preventing
pneumatization.

The studies of Valentini et al,45

Lee et al,32 Hallman et al,46 and
Wallace et al43 have reported on new
bone formation and residual bone
graft after sinus bone graft using
DBBM, finding that the augmented
alveolar bone was composed of more
residual graft than new bone at the
time of implant fixture installation.
In contrast, Yildirim et al,6 Lee
et al,47 Choi et al,48 de Vicente et al,1

and Ferreira et al49 reported more
newly formed bone than residual graft
in their studies, results that are largely
consistent with those of this study
showing 23.49% newly formed
bone and 15.39% residual material.

Although the compositions of new
bone and residual bone might vary ac-
cording to study design and observa-
tion method, the bone cores analyzed
in this study showed more new bone
than the residual graft, indicating the
superior new bone formation ability of
the OCP-coated DBBM material.

Osteoconductivity is a key factor
for new bone formation in DBBM32

and angiogenesis should first be con-
sidered because osteogenic cells can
migrate through microvessels to
increase osteoconductivity.21 The
graft material should thus support the
extended space and be a scaffold for
angiogenesis.16 In the scaffold design
of osteoconductive material, large-
sized pores can provide a central mar-
row space for circumferential bone
formation.31 The macropore-micro-
pore networks of HA act as an archi-
tectural frame that induces new bone
formation,18–20 and promote bone for-
mation becausemicrovessels andmes-
enchymal cells migrate into the
required space, ensuring cell adhesion
and proliferation.31

Macropore sizes are critical for
angiogenesis.22 Herbert et al50 found that
the minimum pore size for bone regener-
ation was more than 100 mm. Several
studies have reported that the optimal
macro-level pore size of DBBM for
effective bone regeneration was more
than 300 mm.51–54 The pore size affects
the direct migration of osteogenic cells
and microvessels, and combined micro-
pore and macropore sizes have been
found to increase macromolecule
absorption, cell adhesion, and bone mor-
phogenetic protein formation, leading to
bone healing.23,55–57 In this study, the
macropore-sized DBBM showed rela-
tively large pore sizes (300;400 mm)
comparedwithBio-Oss in scanning elec-
tronmicroscopy analysis (Fig. 3), and the
composition of new bone was also high-
er. Dominant angiogenesis was also
observed in the macropore (Fig. 4).

Synthetic HA and b-TCP are most
widely used graft materials among
synthetic bone graft.58,59 These materi-
als have excellent tissue compatibility
and showed direct contact between
graft material and new bone without
impingement of cell contents.60,61

OCP is a type of synthetic bone

4 BONE REGENERATION OF OCP-COATED DBBM � LEE ET AL

Copyright � 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.



material that is a precursor of biologi-
cal apatite, which converts into biolog-
ical HA under periosteal membrane.62

The precursor transit to HA through in
situ hydrolysis or dissolution of OCP
followed by HA precipitation.24,63

OCP can be applied as a coat to metal-
lic implants, attached to microscaffold
in the form of granules.55,64 Kamakura
et al65 compared OCP with other b-TCP
and HA and found that OCP was ab-
sorbed at a relatively slow rate and has
active bone formation ability with a core
initiating bone formation in rat calvarial
defect model. Fuji et al18 overcame the
fragility ofOCPusing an alginate scaffold
and studied the optimal OCP physical
type, reporting various bone formation
abilities according to pore size.

CONCLUSION

In this study, we investigated the
potential for new bone formation of
the macropore OCP-coated DBBMs,
but clinical data were not sufficient for
a definite conclusion to be obtained
from statistical analysis. Further stud-
ies are needed to follow up on this
pilot study. However, we found that
a macropore-sized design and OCP
coating could help microvascular
angiogenesis and promote migration
of osteogenic cells, thereby presenting
a favorable environment for new bone
formation in maxillary sinus grafts.
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